
Database Management Systems

Dr. Tariq Ahmad Page 1

Unit-2 Gaining Confidence-RDBMS

Structure

1. Introduction

2. Objectives

3. Lesson-1

The Relational Model

Domains, Attributes, Tuple and Relation

Super keys Candidate keys and Primary keys

Relational Constraints

Domain Constraint

Key Constraint

Integrity Constraint

Insert Operations and Dealing with Constraint Violations

Delete Operations and Dealing with Constraint Violations

Update Operations and Dealing with Constraint Violations

4. Lesson-2

Entity Relationship (ER) Model

Entities

Attributes

Relationships

Database Management Systems

Dr. Tariq Ahmad Page 2

More about Entities and Relationships

Defining Relationship for College Database

E-R Diagram

5. Lesson-3

Conversion of E-R Diagram to Relational Database

6. Lesson-4

Relational Database Integrity

The Keys

Referential Integrity

Entity Integrity

7. Lesson-5

Redundancy and Associated Problems

Single-Valued Dependencies

Single-Valued Normalization

The First Normal Form

The Second Normal Form

The Third Normal Form

Boyce Codd Normal Form (BCNF)

Desirable Properties of Decomposition

Attribute Preservation

Database Management Systems

Dr. Tariq Ahmad Page 3

Lossless-join Decomposition

Dependency Preservation

Lack of redundancy

Rules of Data Normalization

Eliminate Repeating Groups

Eliminate Redundant Data

Eliminate Columns Not Dependent on Key

8. Summary

9. Exercise

10. Suggested readings

Database Management Systems

Dr. Tariq Ahmad Page 4

Introduction:

In unit-1, we discussed about Database management System, its advantages,

characteristics, architecture, etc. This unit is an attempt to provide you information about

relational and E-R models. The relational model is a widely used model for DBMS

implementation. In lesson-1we will discuss the terminology, operators and operations

used in relational model. Relations must satisfy some properties, such as no duplicate

tuples, no ordering of tuples, and atomic attributes, etc. Relations that satisfy these basic

requirements may still have some undesirable characteristics such as data redundancy,

and anomalies. What are these undesirable characteristics and how can we eliminate

them from the database system? We will make an attempt to answer this question too.

However most of these undesirable properties do not arise if the database modeling has

been carried out very carefully using some technique like the Entity-Relationship Model

that we will be discussing in the this unit. It is still important to use the Integrity

constraints to check the database that has been obtained and ensure that no mistakes have

been made in modeling. The central concept in these discussions is the concept of

Database integrity (discussed in lesson-4), the notion of functional dependency, which

depends on understanding the semantics of the data and which deals with what

information in a relation is dependent on what other information in the relation.

We will also discuss, in this unit (in lesson-2), the E-R model, which primarily is a

semantic model and is very useful in creating raw database design that can be further

refined. We discuss Entity Relationship diagrams and their conversion to databases also.

In lessons 3we will discusses how to convert ERDs into Relational database and in lesson

5, redundancy, its associated problems and Normalization are discussed.

Objectives

Database Management Systems

Dr. Tariq Ahmad Page 5

After going through this unit, you should be able to:

 Describe relational model and its advantages;

 Draw E-R diagrams for given problems;

 Normalize data and describe various Normal forms

 Convert an E-R diagram to a relational database and vice versa.

 Define the concept of entity integrity and measures to check the Integrity of data

 Describe relational database referential integrity constraints

 Define the concept of functional dependency

 Show how to use the dependency information to decompose relations

Lesson-1

Database Management Systems

Dr. Tariq Ahmad Page 6

The Relational Model

A model is a representation of something (A mathematical or graphical representation of

some problem). In DBMS model basically defines the structure or organization of data

and a set of operations on that data. Relational model is a simple model in which database

is represented as a collection of two dimensional tables called “Relations”. Thus,

because of its simplicity, Relational model is most commonly used model.

Below is shown a relation named EMP showing simplicity of relational design:

Below are some of the advantages of relational model:

 Ease of use: The simple tabular representation of database helps the user define

and query the database conveniently. For example, you can easily find out the age

of the person whose first name is “Rafi”.

 Flexibility: Since the database is a collection of tables, new data can be added

and deleted easily. Also, manipulation of data from various tables can be done

easily using various basic operations. For example, we can add a telephone

number field in the above table.

E_ID E_Name E_Age E_Address

1001 Mushtaq Ahmad 35 DDE, UOK, Sgr

1002 Tanveer Ahmad 34 DBFS, UOK, Sgr

1003 Tariq Ahmad 35 TBS, UOK, Sgr

1004 Rafi Ahmad 37 TBS, UOK, Sgr

1005 Muzaffar Rasool 30 DCS, IUST, Pul

Database Management Systems

Dr. Tariq Ahmad Page 7

 Accuracy: In relational databases the relational algebraic operations are used to

manipulate data. These are mathematical operations and ensure accuracy as

compared to other models.

Domain, Attribute, Tuple and Relation

Before we discuss the relational model in more detail, let us first define some very basic

terms and concepts associated with RDBMS.

 Tuple: Each row in a table (a table generally represents a real world object or what is

called an entity and a table in RDBMS is called a Relation) represents a record and is

called a tuple. A table containing „n‟ attributes in a record is called n-tuple.

 Attribute: The name of each column in a table is used as its identifier and is called

an attribute (a characteristic feature of an entity).

For example, following table shows a relation named EMP(employee). The columns

E_ID, E_Name, E_Age, E_Address and E_phone are the attributes of employee and each

row in the table represents a separate tuple or record (viz 1001, Mushtaq Ahmad……).

Relation Name: EMP

E_ID E_Name E_Age E_Address E_phone

1001 Mushtaq Ahmad 35 DDE, UOK, Sgr 9419000101

1002 Tanveer Ahmad 34 DBFS, UOK, Sgr 9419000102

1003 Tariq Ahmad 35 TBS, UOK, Sgr 9906526072

1004 Rafi Ahmad 37 TBS, UOK, Sgr 9900000101

1005 Muzaffar Rasool 30 DCS, IUST, PUL 9900000102

Database Management Systems

Dr. Tariq Ahmad Page 8

 Domain: A domain is a set or range of permissible values that can be given to an

attribute. So every attribute in a table has a specific domain. Values to these

attributes cannot be assigned outside their domains. In the example above if domain

of E_ID is a set of integer values from 1001 to 1099, then a value outside this range

will not be valid. Some other common domains may be age between 18 and 37. The

domain can be defined by assigning a type or a format or a range to an attribute. For

example, a domain for a number 501 to 999 can be specified by having a 3-digit

number format having a range of values between 501 and 999. However, the

domains can also be non-contiguous. For example, the enrolment number of NET

exam conducted by UGC has the first two digits as the centre number, thus the ten-

digit enrolment numbers are non-continuous.

 Relation: A relation consists of:

1) Relational Schema

2) Relation instance

Relational Schema: A relational schema specifies the relation‟s name, its attributes and

the domain of each attribute. If R is the name of a relation and A1, A2…An is a list of

attributes representing R then R(A1, A2…An) is called a relational schema. Each

attribute in this relational schema takes a value from some specific domain called

Domain (Ai). For example, the relational schema for relation EMP as in Figure 1 will be:

EMP (E_ID: number/integer, E_Name: character/string, E_Age: number/integer,

E_Address: character/string)

Total number of attributes in a relation denotes the degree of a relation. Since the EMP

relation contains four attributes, so this relation is of degree 4.

A relation schema is generally denoted by a Schema Diagram, which is a graphical

representation of a schema. The schema Diagram of EMP relation is shown below:

 EMP

E_ID E_Name E_Age E_Address

Database Management Systems

Dr. Tariq Ahmad Page 9

Relation Instance or Relation State: A relation instance denoted as r is a collection of

tuples for a given relational schema at a specific point of time. A relation state r of the

relation schema R (A1,A2,……….AN), also denoted by r(R) is a set of n-tuples

 r = {t1,t2,…………tm}

Where each n-tuple is an ordered list of n values

 t = <v1,v2,…….., vn>

Where each vi belongs to domain (Ai) or contains null values.

 The relation schema is also called „intension‟ and relation state is also called

„extension‟.

Let us elaborate the definitions above with the help of examples:

 Example 1:

RELATION SCHEMA for STUDENT entity or relation:

STUDENT (RollNo: number, Name: character, Course: character, Age: number)

RELATION INSTANCE of STUDENT relation:

 STUDENT

RollNo Name Course Age

101 Syed Tajali IMBA 19

102 Musadiq Noor IMBA 19 t2

t3

t1

Database Management Systems

Dr. Tariq Ahmad Page 10

103 Afsha Tariq IMBA 18

Where t1 = (101, Syed Tajali, IMBA, 19) for this relation instance, m = 3 and n = 4.

Example 2:

RELATIONAL SCHEMA for EMP relation:

EMP (E_ID: number, NAME: character, SALARY: float, ADDRESS: character)

 RELATION INSTANCE for EMP relation:

 EMP

E_ID NAME SALARY ADDRESS

1001 Dr. Mushtaq 40000 DDE, UOK, Sgr

1002 Dr. Tanveer 30000 DDE, UOK, Sgr

In this instance, m = 2 and n = 4

Thus current relation state reflects only the valid tuples that represent a particular state of

the real world. However, Null values can be assigned for the cases where the values are

unknown or missing.

Ordering of tuples

In a relation, tuples are not inserted in any specific order. Ordering of tuples is not

defined as a part of a relation definition. However, records may be organized later

according to some attribute value in the storage systems. For example, records in EMP

table may be organized according to E_ID. Such data or organization depends on the

requirement of the underlying database application. However, for the purpose of display

t1

t2

Database Management Systems

Dr. Tariq Ahmad Page 11

we may get them displayed in the sorted order of age. The following table is sorted by

age. It is also worth mentioning here that relational model does not allow duplicate

tuples.

EMP

Super Keys, Candidate Keys and Primary Keys for the Relations

As discussed in the previous section ordering of tuples in relations does not matter and all

tuples in a relation are unique. However, can we uniquely identify a tuple in a relation?

How? Let us discuss the concepts of keys that are primarily used for the above purpose.

Super Keys: A super key is an attribute or set of attributes used to identify the records

uniquely in a relation. For Example, in the Relation EMP described earlier E_ID is a

super key since E_ID is unique for each person. Similarly (E_ID, E_Age) and (E_ID,

NAME) are also super keys of the relation EMP since their combination is also unique

for each record.

Candidate keys: Super keys of a relation can contain extra attributes i.e. it can be a

combination of many attributes or a composite key. Candidate keys are minimal super

keys, i.e. such a key contains no extraneous attributes. An attribute is called extraneous if

even after removing it from the key, the remaining attributes still have the properties of a

key. The following properties must be satisfied by the candidate keys:

E_ID E_Name E_Age E_Address E_phone

1005 Muzaffar Rasool 30 DCS, IUST, PUL 990000102

1002 Tanveer Ahmad 34 DBFS, UOK, Sgr 941900103

1004 Rafi Ahmad 37 TBS, UOK, Sgr 990000101

Database Management Systems

Dr. Tariq Ahmad Page 12

 A candidate key must be unique.

 A candidate key‟s value must exist. It cannot be null. (This is also called entity

integrity rule)

 A candidate key is a minimal set of attributes.

 The value of a candidate key must be stable. Its value cannot change outside the

control of the system.

 Primary Keys: A relation can have more than one candidate keys and one of them can

be chosen as a primary key (A key that uniquely identifies each tuple in the relation). For

example, in the relation EMP the two possible candidate keys are E-ID and NAME

(assuming names are unique in the table). E-ID may be chosen as the primary key.

RELATIONAL CONSTRAINTS

A constraint is a business rule or a real life limitation on data stored in the database.

There are three types of constraints on relational database viz.:

 DOMAIN CONSTRAINTS

 PRIMARY KEY CONSTRAINTS

 INTEGRITY CONSTRAINTS

 Domain Constraints: These specify that each attribute in a relation must contain an

atomic value only from the corresponding domains. The data types associated with

commercial RDBMS domains include:

1. Standard numeric data types for integer (such as short- integer, integer, long

integer)

2. Real numbers (float, double precision floats)

3. Characters

4. Fixed length strings and variable length strings.

Database Management Systems

Dr. Tariq Ahmad Page 13

 Thus, domain constraints specify the conditions that we want to put on each instance of

the relation. So the values that appear in each column must be drawn from the domain

associated with that column. For example, consider the relation:

EMP

E_ID NAME AGE SALARY ADDRESS

1001 Dr. Mushtaq 35 40000 DDE, UOK, Sgr

1002 Dr. Tanveer 34 30000 DDE, UOK, Sgr

In the relation above, AGE of an Employee always belongs to the integer domain within

a specified range (e.g. 18<=age<=65), and not to strings or any other domain. Within a

domain non-atomic values should be avoided. This sometimes cannot be checked by

domain constraints. For example, a database which has area code and phone numbers as

two different fields will take phone numbers as-

Country code Phone No.

0191 9906526072

A non-atomic value in this case for a phone can be 01919906526072, however, this value

can be accepted by the Phone field.

Key Constraint: This constraint states that the key attribute value in each tuple must be

unique, i.e., no two tuples contain the same value for the key attribute. This is because the

value of the primary key is used to uniquely identify the tuples in the relation.

Example 3:

If A is the key attribute in the following relation R then A1, A2 and A3 must be unique.

t1

t2

Database Management Systems

Dr. Tariq Ahmad Page 14

Example 4:

In relation EMP,E_ID is the primary key so E_ID cannot be given same value for two

persons.

Integrity Constraints: There are two types of integrity constraints:

 Entity Integrity Constraint

 Referential Integrity Constraint

Entity Integrity Constraint:

It states that no primary key value can be null. This is because the primary key is used to

uniquely identify individual tuples in the relation. So we will not be able to identify the

records uniquely containing null values for the primary key attributes. This constraint is

specified on one individual relation.

Example 5:

Let R be the relation as shown below:

E_ID E_Name E_Age E_Address E_phone

NULL Mushtaq Ahmad 35 DDE, UOK, Sgr 9419000101

Database Management Systems

Dr. Tariq Ahmad Page 15

Note: “XXX” identifies the Primary key of a relation.

In the relation R above, the primary key has null values in the tuples t1 & t3. NULL value

in primary key is not permitted, thus, relation instance is an invalid instance.

Referential integrity constraint:

It states that the tuple in one relation that refers to another relation must refer to an

existing tuple in that relation. This constraint is generally specified on two relations (not

necessarily distinct). It uses a concept of foreign key and has been dealt with in more

detail in the next unit.

 Employee

E_no E_name E_sal E_depno

1001 Tariq Ahmad 40000 10

1002 Mushtaq Ahmad 39000 40

1003 Tanveer Ahmad 25000 40

1009 Kaiser Rashid 44000 20

1002 Tanveer Ahmad 34 DBFS, UOK, Sgr 9419000102

NULL Mushtaq Ahmad 35 DDE, UOK, Sgr 9906526072

1004 Rafi Ahmad 37 TBS, UOK, Sgr 9900000101

1005 Muzaffar Rasool 30 DCS, IUST, PUL 9900000102

NULL Asif Mohammad 25 DCS, UOK, Sgr 9858120001

Database Management Systems

Dr. Tariq Ahmad Page 16

Department

Depno Depname Dep_head D_location

10 The Business School Prof. Shabir University of Kashmir

20 Distance Education Prof. Neelofar University of Kashmir

30 Islamic Studies Prof. Hamid University of Kashmir

40 Business & Financial Studies Prof. Nazir University of Kashmir

50 Computer Science Dr. Khursheed University of Kashmir

Note:

1) „XXXX‟ identifies the Primary key of a relation.

2) „IIII‟ (Italic) identifies the Foreign key of a relation.

 In the example above, the value of E_depno in every Employee tuple is matching with

the value of Depno in some Department tuple. If a tuple having values (60, 70) is added

then it is invalid since referenced relation Department doesn‟t include 60 or 70. Thus, it

will be a violation of referential integrity constraint.

Dealing with Constraint Violations: while performing operations on data, constraints

may get violated. There are three basic operations that can be performed on relations:

 Insertion

 Deletion

 Update

INSERT Operation:

Database Management Systems

Dr. Tariq Ahmad Page 17

The insert operation allows us to insert a new tuple in a relation. When we try to insert a

new record, then any of the following four types of constraints can be violated:

 Domain constraint: If the value given to an attribute lies outside the domain of that

attribute.

 Key constraint: If the value of the key attribute in new tuple t is the same as in the

existing tuple in relation R.

 Entity Integrity constraint: If the primary key attribute value of new tuple t is

given as null.

 Referential Integrity constraint: If the value of the foreign key in t refers to a tuple

that doesn‟t appear in the referenced relation.

Dealing with constraints violation during insertion:

If the insertion violates one or more constraints, then two options are available:

 Default option: - Insertion can be rejected and the reason of rejection can also be

explained to the user by DBMS.

 Ask the user to correct the data and resubmit it.

Example 6:

Consider the Relations Employee and Department:

E_no E_name E_sal E_depno

1001 Tariq Ahmad 40000 10

1002 Mushtaq Ahmad 39000 40

1003 Tanveer Ahmad 25000 40

1009 Kaiser Rashid 44000 20

Database Management Systems

Dr. Tariq Ahmad Page 18

Depno Depname Dep_head D_location

10 The Business School Prof. Shabir University of Kashmir

20 Distance Education Prof. Neelofar University of Kashmir

30 Islamic Studies Prof. Hamid University of Kashmir

40 Business & Financial Studies Prof. Nazir University of Kashmir

50 Computer Science Dr. Khursheed University of Kashmir

(1) Insert into employee values (1001, „jasim‟, 18000, 10);

 Violated constraint: - Key constraint

 Reason: - Primary key 1001 already exists.

 Solution: - DBMS could ask the user to provide valid E_no value and accept the

insertion if valid employee number is provided.

 (2) Insert into employee values (NULL, „jasim‟, 18000, 10);

 Violated constraint: - Entity Integrity constraint

 Reason: - Primary key is „null‟.

 Solution: - DBMS could ask the user to provide valid E_no value and accept the

insertion if valid employee number is provided.

(3) Insert into employee values (e101, „jasim‟, 18000, 10);

Violated constraint: - Domain constraint

 Reason: - value of E_no is alphanumeric, which is not valid.

Solution: - Provide a valid value from within the numeric domain

Database Management Systems

Dr. Tariq Ahmad Page 19

(4) Insert into employee values (1019, „jasim‟, 18000, 60);

Violated constraint: - Referential Integrity Constraint

Reason: - Department number 60 does not exist.

Solution: - Either set the value to NULL or assign an existing department number to the

employee or add a record to Department table with Depno 60 if possible.

(5) Insert into employee values (1019, „jasim‟, 18000, 20);

 Violated constraint: - None

The Deletion Operation:

Using the delete operation one or more records can be deleted from a relation. To delete

some specific records from the database a condition is also specified based on which

records can be selected for deletion.

Constraints that can be violated during deletion: Only one type of constraint can be

violated during deletion that is the referential integrity constraint. It can occur when you

want to delete a record in the table where it is referenced by the foreign key of another

table.

 Solution: - If the deletion operation violates referential integrity constraint, then three

options are available:

 Default option: - Reject the deletion. It is the job of the DBMS to explain to the

user why the deletion was rejected.

 Attempt to cascade (or propagate) the deletion by deleting tuples that reference the

tuple that is being deleted.

 Change the value of referencing attribute that causes the violation.

The Update Operations:

Database Management Systems

Dr. Tariq Ahmad Page 20

Update operations are used for modifying database values. The constraint violations

faced by this operation are logically the same as the problem faced by Insertion and

Deletion Operations. Therefore, we will not discuss this operation here.

Lesson-2

ENTITY RELATIONSHIP (ER) MODEL

Let us first look into some of the main features of ER model.

 Entity relationship model is a high-level conceptual data model.

 It allows us to describe the real-world data in terms of objects and their

relationships.

 It is widely used to develop an initial design of a database.

 It provides a set of useful concepts that make it convenient for a developer to

move from a basic set of information to a detailed and precise description of

information that can be easily implemented in a database system.

Database Management Systems

Dr. Tariq Ahmad Page 21

 It describes data as a collection of entities, relationships and attributes.

Let us explain all this with the help of an example application.

Here we will describe an example database application containing COLLEGE database

and use it in illustrating various E-R modeling concepts. College database keeps track of

Students, Staff, Departments and Courses organized by various departments. Following is

the description of COLLEGE database:

College contains various departments like Department of English, Department of Hindi,

and Department of Computer Science etc. Each department is assigned a unique ID and

Name. Some staff members are also appointed in each department and one of them works

as head of the department. There are various courses conducted by each department. Each

course is assigned a unique ID, Name and Duration. Below is given a brief introduction

of each of these entities:

 Staff/Faculty information contains faculty identification number, name, address,

department, basic salary etc. A faculty member is assigned to only one department

but can teach various courses of other department also.

 Student‟s information contain Roll no, Name, Address, course opted etc. A student

can opt only for one course.

 Department information contains department name, department number, head of

the department and location etc. One department will be headed by only one

person.

 Course information contains Course number, title, duration etc.

 Parent (guardian) information is also kept along with each student. We keep each

guardian‟s name, age, sex and address.

Entities: An entity is an object of concern used to represent the things in the real world

having physical or logical existence e.g., car, table, book, software program, loan etc. It

Database Management Systems

Dr. Tariq Ahmad Page 22

represents a class of things, not any one instance, e.g., „STUDENT‟ entity has instances

of „Rayees‟ and „Muheet‟.

Entity Set or Entity Type: A collection of similar kind of entities is called an Entity Set

or entity type. E.g. for the COLLEGE database described above objects of concern are

Students, Faculty, Course and departments. The collections of all the students‟ entities

form entity set STUDENT. Similarly collection of all the courses form an entity set

COURSE. Entity sets need not be disjoint. For example – an entity may be part of the

entity set STUDENT, the entity set EMPLOYEE, and the entity set PERSON.

Entity identifier key attributes: An entity type usually has an attribute or a group of

attributes whose values are distinct for each individual entity in the collection. Such an

attribute or set of attributes is called a key attribute and its values can be used to identify

each entity uniquely. E.g. E_ID, D_NO, SSN, ISBN

Strong entity set: The entity types containing a key attribute are called strong entity

types or regular entity types. E.g. The EMPLOYEE entity has a key attribute E_ID which

uniquely identifies it, hence is a strong entity.

Attributes: An attribute is a property or characteristic used to describe the specific

feature of the entity. So to describe an entity entirely, a set of attributes is used that

further describe the entity. For example, a student entity may be described by the

student‟s name, age, address, course etc.

An entity will have a value for each of its attributes. For example for a particular

employee the following values can be assigned:

E_ID: 1002

E_name: Tanveer

E_sal: 18000

E_depno: 10

Database Management Systems

Dr. Tariq Ahmad Page 23

Domain: Each attribute of an entity type contains a possible set of values that can be

attached to it. This is called the domain of an attribute. An attribute cannot contain a

value outside this domain. E.g. for DEPARTMRNT entity D_NO has a specific domain,

integer values say from the set {10, 20, 30, 40, 50, . .}.

Types of attributes: Attributes attached to an entity can be of various types. Below we

discuss the different types of these attributes.

Simple: An atomic attribute that cannot be further divided into smaller parts and

represents the basic meaning is called a simple attribute. For example: The „First name‟,

„Last name‟, age attributes of an employee entity represent simple attributes.

Composite: Attributes that can be further divided into smaller units and each individual

unit contains a specific meaning. For example:-The NAME attribute of an employee

entity can be sub-divided into First name, Last name and Middle name.

Single valued: Attributes having a single value for a particular entity. For Example, Age

is a single valued attribute of an employee entity.

Multi valued: Attributes that have more than one values for a particular entity is called a

multi valued attribute. Different entities may have different number of values for these

kinds of attributes. For multi valued attributes we must also specify the minimum and

maximum number of vales that can be attached. For Example phone number for

employee entity is a multi valued attribute as an employee can have a home phone, an

office phone and a mobile phone.

Stored: Attributes that are directly stored in the data base. For example, „Date of Birth‟

or „Date of Employment‟ attribute of an employee.

Derived: Attributes that are not stored directly but can be derived from stored attributes

are called derived attributes. For Example, age of a student can be calculated from his

„DOB‟ or years of services of an employee entity can be determined from the current date

Database Management Systems

Dr. Tariq Ahmad Page 24

and the date of joining of the employee. Similarly, total salary of a person can be

calculated from his „basic salary‟ attribute.

Relationships: A relationship can be defined as:

 A connection or set of associations, or

 A rule for communication among entities:

E.g. In College database, the association between student and course entity, i.e., “Student

opts course” is an example of a relationship.

Relationship sets: A relationship set is a set of relationships of the same type. For

example, consider the relationship between two entity sets student and course. Collection

of all the instances of relationship sets forms a relationship set called relationship type.

Degree: The degree of a relationship type is the number of participating entity types. The

relationship between two entities is called binary relationship. A relationship among three

entities is called ternary relationship. Similarly relationship among n entities is called n-

ary relationship. E.g. Relationship between employee and department entities is a binary

relationship.

Relationship Cardinality: Cardinality specifies the number of instances of an entity

associated with another entity participating in a relationship. Based on the cardinality,

binary relationship can be further classified into the following categories:

 One-to-one: An instance in entity A is associated with at most one instance in

entity B, and an instance in entity B is associated with at most one instance in

entity A. E.g. Relationship between college and principal

Database Management Systems

Dr. Tariq Ahmad Page 25

One college can have at the most one principal and one principal can be assigned to only

one college. Similarly we can define the relationship between a country and a prime

minister.

 One-to-many: An instance in entity A is associated with any number of instances

of entity B. One instance in entity B is associated with at the most one instance in

entity A. E.g. Relationship between department and employee (faculty).

One department can appoint any number of faculty members but a faculty member is

assigned to only one department.

 Many-to-one: An instance in entity A is associated with at most one entity in B

but an instance in entity B is associated with any number of instances in entity A.

E.g. Relationship between course and instructor.

An instructor can teach various courses but a course can be taught only by one instructor.

(assumed).

 Many-to-many: Any number of instances in entity A are associated with any

number of instances in entity B and vice versa. E.g. Relationship between course

and faculty.

One faculty member can be assigned to teach many courses and one course may be

taught by many faculty members.

Database Management Systems

Dr. Tariq Ahmad Page 26

Relationship between book and author.

One author can write many books and one book can be written by more than one authors.

Recursive relationships

When the same entity type participates more than once in a relationship type, in different

roles, the relationship types are called recursive relationships.

Participation constraints

The participation Constraints specify whether the existence of an entity depends on its

being related to another entity via the relationship type. There are 2 types of participation

constraints, Total and Partial.

Total Participation: When all the entities from an entity set participate in a relationship

type, it is called total participation. For example, the participation of the entity set student

in the relationship set must „opt‟ is said to be total because every student enrolled must

opt for a course.

Partial Participation: When it is not necessary for all the entities from an entity set to

participate in a relationship type, it is called partial participation. For example, the

participation of the entity set faculty in „manages‟ is partial, since every faculty member

in a college does not head or manage a department`.

Database Management Systems

Dr. Tariq Ahmad Page 27

Weak Entity: Entity types that do not contain any key attribute, and hence cannot be

identified independently, are called weak entity types. A weak entity can be identified

uniquely only by considering some of its attributes in conjunction with the primary key

attributes of another entity, which is called the identifying or strong or owner entity.

Generally a partial key is attached to a weak entity type that is used for unique

identification of weak entities related to a particular owner entity type. The following

restrictions must hold:

 The owner entity set and the weak entity set must participate in one-to-many

relationship set. This relationship set is called the identifying relationship set of

the weak entity set.

 The weak entity set must have total participation in the identifying relationship.

E.g. consider the entity type DEPENDENT related to EMPLOYEE entity, which is used

to keep track of the dependents of each employee. The attributes of dependents are:

name, birth date, sex and relationship. Each employee entity is said to own the dependent

entities that are related to it. However, note that the „dependent‟ entity does not exist of

its own; it is dependent on the employee entity. In other words we can say that in case an

employee leaves the organization all dependents related to him/her also leave along with

him. Thus, the „dependent‟ entity has no significance without the entity „employee‟.

Thus, it is a weak entity and the employee entity is the strong or identifying entity for

dependent entity.

Extended E-R model:

Although, the basic features of E-R diagrams are sufficient to design many database

situations. However, with more complex relations and advanced database applications, it

is required to move to enhanced features of E-R models. The three such features are:

 Generalization

 Specialization, and

Database Management Systems

Dr. Tariq Ahmad Page 28

 Aggregation

We will explain these concepts with the help of an example.

A car manufacturing company can manufacture different types of vehicles. These

vehicles can be put into various categories like Car, Bus, and Truck etc. This

categorization of vehicles represents a specialization/generalization hierarchy. It is shown

as:

Figure: Generalization and Specialization hierarchy

But how are these diagrams converted to tables? This is shown in section 2.7.

Aggregation: One limitation of the E-R diagram is that they do not

Vehicle

Car Truck Bus

Nu

mb

er

Cap

acit

y

Model
Chasis Owner Reg_no

Mil

age

Type

G

e

n

e

r

a

l

i

z

a

t

i

o

n

S

p

e

c

i

a

l

i

z

a

t

i

o

n

Database Management Systems

Dr. Tariq Ahmad Page 29

allow representation of relationships among relationships. In such a case the relationship

along with its entities are promoted (aggregated to form an aggregate entity which can be

used for expressing the required relationships).

Defining Relationship for College Database

Using the concepts defined in above sections, we have identified that strong entities in

COLLEGE database are STUDENT, FACULTY, COURSE and DEPARTMENT. This

database also has one weak entity called GUARDIAN. We can specify the following

relationships:

1. Head of is a 1:1 relationship between FACULTY and DEPARTMENT (some

faculty member is head of the department). Participation of the entity FACULTY

is partial since not all the faculty members participate in this relationship, while

the participation from DEPARTMENT side is total, since every department has

one head.

2. Works in, is a 1:N relationship between DEPARTMENT and FACULTY.

Participation from both sides is total.

3. Opts, is a 1:N relationship between COURSE and STUDENT. Participation from

student side is total because we are assuming that each student enrolled opts for a

course. But the participation from the course side is partial, since there can be

courses that no student has opted for.

4. Taught by is a M: N relationship between FACULTY and COURSE, as a faculty

can teach many courses and a course can be taught by many faculty members.

5. Enrolled, is a 1:N relationship between STUDENT and DEPARTMENT as a

student is allowed to enroll for only one department at a time.

6. Has, is a 1:N relationship between STUDENT and GUARDIAN as a student can

have more than one local guardian and one local guardian is assumed to be related

to one student only. The weak entity Guardian has total participation in the

relation “Has”.

Database Management Systems

Dr. Tariq Ahmad Page 30

Next we will make an E-R diagram for the college database discussed in the previous

sections.

E-R Diagram: Let us now make an Entity Relationship diagram for the student database

as per the description given in the previous section. With E-R diagram we can express the

overall logical structure of a database.

Notations used in E-R diagrams: Before constructing an E-R diagram let‟s describe the

symbols used to construct an E-R diagram:

 Representing entity sets (strong).

 Representing weak entity sets.

 Representing attributes.

 Representing key attribute.

 Representing relationship sets.

 Representing flow of

Now let‟s construct E-R diagram for our COLLEGE database

Rectangle

Rectangle

Eclipse

Eclipse

Diamond

Student

Course

Department

Faculty

Course_id C_Nam

Address

Course Name

RollNo

D_name

Dno Dname

Hod

Dno

Hod

Guardian

Has

Opts Works

Taught

Enrolls

Database Management Systems

Dr. Tariq Ahmad Page 31

Figure 5: ER diagram of COLLEGE database

Lesson-3

Converting E-R diagram into Relational Database:

For every ER diagram we can construct a relational database which is a collection of

tables. Following are the set of steps used for conversion of E-R diagram to a relational

database.

Conversion of entity sets:

1. For each strong entity type E in the ER diagram, we create a relation R containing

all the simple attributes of E. The primary key of the relation R will be one of the

key attributes of R. For example, the STUDENT, FACULTY, COURSE and

DEPARTMENT tables in the following figure.

STUDENT

RollNo Name Course Address

Database Management Systems

Dr. Tariq Ahmad Page 32

FACULTY

F_id F_Name Address Salary

COURSE

Course_id Course_Name Duration

DEPARTMENT

D_no D_Name HOD Location

2. For each weak entity type W in the E R Diagram, we create another relation R that

contains all simple attributes of W. If E is an owner entity of W then key attribute

of E is also included in R. This key attribute of R is set as a foreign key attribute of

R. Now the combination of primary key attribute of owner entity type and partial

key of weak entity type will form the key of the weak entity type. Figure below

Database Management Systems

Dr. Tariq Ahmad Page 33

shows the weak entity GUARDIAN, where the key field of student entity RollNo

has been added.

GUARDIAN

RollNo Dep_Name Address Relationship

 Fig. Conversion of weak entity into a table

Conversion of relationship sets:

 Binary Relationships:

 One-to-one relationship: For each 1:1 relationship type R in the ER diagram

involving two entities E1 and E2 we choose one of entities (say E1) preferably

with total participation and add primary key attribute of another entityE2 as a

foreign key attribute in the table of entity (E1). We will also include all the simple

attributes of relationship type R in E1 if any. For example, the DEPARTMENT

relationship has been extended to include head-Id, an attribute of the relationship.

There is a 1:1 Head_of relationship between FACULTY and DEPARTMENT. We

choose DEPARTMENT entity having total participation and add primary key attribute ID

of FACULTY entity as a foreign key in DEPARTMENT entity named as Head_ID. Now

the DEPARTMENT table will be as follows:

DEPARTMENT

D_NO D_NAME Head_ID Date-from

Figure 9: Converting 1:1 relationship

Database Management Systems

Dr. Tariq Ahmad Page 34

 One-to-many relationship: For each 1: n relationship type R involving two

entities E1 and E2, we identify the entity type (say E1) at the n-side of the

relationship type R and include primary key of the entity on the other side of the

relation (say E2) as a foreign key attribute in the table of E1. We include all

simple attributes (or simple components of a composite attributes of R (if any) in

the table E1).

The works_in relationship between the DEPARTMENT and FACULTY entities is a 1:

N relationship. For this relationship choose the entity at N side, i.e., FACULTY and add

primary key attribute of another entity DEPARTMENT, i.e., DNO as a foreign key

attribute in FACULTY entity.

Figure 10: Converting 1:N relationship

 Many-to-many relationship: For each m:n relationship type R, we create a new

table (say S) to represent R. We also include the primary key attributes of both the

participating entity types as a foreign key attribute in S. Any simple attributes of

the m:n relationship type (or simple components of a composite attribute) is also

included as attributes of S.

F_id F_Name Address Salary D_no

D_no D_Name HOD Location

PK-FK Relationship

Database Management Systems

Dr. Tariq Ahmad Page 35

For example, the m: n relationship taught-by between entities COURSE and FACULTY

should be represented as a new table. The structure of the table will include primary key

of COURSE and primary key of FACULTY entities. A new table TAUGHT-BY will be

created as:

 TAUGHT_BY

F_ID Course_ID

Figure 11: Converting N:N relationship

 n-ary Relationship: For each n-ary relationship type R where n>2, we create a new

table S to represent R. We include as foreign key attributes in s the primary keys of

the relations that represent the participating entity types. We also include any simple

attributes of the n-ary relationship type (or simple components of composite

attributes) as attributes of S. The primary key of S is usually a combination of all the

foreign keys that reference the relations representing the participating entity types.

 Multi-valued attributes: For each multi-valued attribute „A‟, we create a new

relation R that includes the multi-valued attribute and the primary key attribute k

of the relation that represents the entity type or relationship type that has as an

attribute. The primary key of R is then combination of A and k.

For example, if an EMPLOYEE entity has EMPNo, EName and EPhoneNo as its

attributes where phone number is a multi-valued attribute, then we will create a table

PHONE (EMPNo, EPhoneNo) where primary key is the combination OF EMPNo and

EPhoneNo attributes. We need not have phone number as an attribute of EMPLOYEE

relation then. It can have all attributes excluding phone number that will become a part of

the new relation as shown in the figure below.

 PHONE

Database Management Systems

Dr. Tariq Ahmad Page 36

FMPNO EPhoneNo

 Converting Generalization / Specialization hierarchy to tables: A simple rule

for conversion may be to decompose all the specialized entities into tables in case

they are disjoint. For example, for the Figure shown under

Generalization/Specialization section, we can create three tables as:

Car (RegNo, ChasisNo, Model, Color).

Bus (RegNo, ChasisNo, Model, Capacity).

Truck (RegNo, ChasisNo, Model, Tonnage).

The other way is to create tables that are overlapping for example, assuming that in the

example of Figure 4 if the accounts are not disjoint then we may create three tables:

account (account-no, holder-name, branch, balance)

saving (account-no, interest)

current (account-no, charges)

Database Management Systems

Dr. Tariq Ahmad Page 37

Lesson-4

DATABASE INTEGRITY:

A database is a collection of data. But, is the data stored in a database trustworthy? To

answer this question we must first answer the question. What is integrity?

Integrity simply means to maintain the consistency of data. Thus, integrity constraints in

a database ensure that changes made to the database by authorized users do not

compromise data consistency. Thus, integrity constraints do not allow damage to the

database. There are primarily three integrity constraints: the entity integrity constraint,

Domain integrity constraint and the referential integrity constraint. In order to define

these constraints, we need to understand the basic concept of Key with respect to a

Database Management System.

The Keys

Candidate Key: In a relation R, a candidate key for R is a subset of the set of attributes

of R, which have the following two properties:

 Uniqueness: No two distinct tuples in R have the same value for the candidate

key

 Irreducible: No proper subset of the candidate key has the uniqueness property

that the candidate key possesses.

Database Management Systems

Dr. Tariq Ahmad Page 38

 Every relation must have at least one candidate key which cannot be reduced further.

Duplicate tuples are not allowed in relations. Any candidate key can be a composite key

also. For Example, (student_id + course_id) together can form the candidate key of a

relation called marks (student-id, course-id, marks). Let us summarize the properties of a

candidate key.

 A candidate key must be unique and irreducible

 A candidate may involve one or more than one attributes. A candidate key that

involves more than one attribute is said to be composite.

But why are we interested in candidate keys? Candidate keys are important because they

provide the basic tuple-level identification mechanism in a relational system. For

example, if the enrolment number is the candidate key of a STUDENT relation, then the

answer of the query: “Find student details from the STUDENT relation having enrolment

number A0123” will output at most one tuple.

Primary Key: The primary key is the candidate key that is chosen by the database

designer as the principal means of identifying entities within an entity set. The remaining

candidate keys, if any, are called alternate keys.

Foreign Keys: Let us first give you the basic definition of foreign key. Let R1 be a

relation, then a foreign key in R2 is a subset of the set of attributes of R2, such that:

 There exists a relation R1 (R1 and R2 not necessarily distinct) with a candidate

key, and

 For all time, each value of a foreign key in the current state or instance of R2 is

identical to the value of Candidate Key in some tuple in the current state of R1.

Now, let us define the concept of foreign key in more practical terms with the help of an

example. Assume that in an organization, an EMPLOYEE may always be assigned a

department and no employee can be employed unless he/she is assigned a department.

Therefore we will add an instance to an employee relation only if the department instance

Database Management Systems

Dr. Tariq Ahmad Page 39

exists or it will be rejected. Assume that the information is represented by the

organization in two different relations named EMPLOYEE and DEPARTMENT. The

DEPARTMENT relation describes the different departments in the organization. Assume

that the relational schema for the above two relations are:

EMPLOYEE (E_id, E_name, D_no)

DEPARTMENT (D_no, D_name, D_head)

 In the relations above E_ID and D_No are unique and not NULL, respectively. As we

can clearly see, we can identify the complete instance of the entity set employee through

the attribute E_ID. Thus E_ID is the primary key of the relation EMPLOYEE. Similarly

D_No is the primary key for the DEPARTMENT relation. Figure below shows the E-R

diagram for these entities and relationship.

Figure 1: E-R diagram for employee role in department

Let us consider sample relation instances as:

E_id E_name D_no

1001 Tariq Ahmad 10

1002 Mushtaq Ahmad 40

EMPLOYEE DEPARTMENT
WORKS_IN

Database Management Systems

Dr. Tariq Ahmad Page 40

 EMPLOYEE

DEPARTMENT

D_NO is the foreign key in EMPLOYEE relation; it references the relation

DEPARTMENT where D_no is the primary key. This means that the D_no

attribute of EMPLOYEE relation will derive its values from the values of primary key

attribute of DEPARTMENT relation.

1003 Tanveer Ahmad 40

1004 Rafi Ahmad 10

D_ no D_name D_head

10 The Business School Prof. Shabir

40 Business & Financial

Studies

Prof. Nazir

20 Distance Education Prof. Nelofar

Database Management Systems

Dr. Tariq Ahmad Page 41

Database Integrity and Normalization: Now after defining the concept of foreign key,

we can proceed to discuss the actual integrity constraints namely Referential Integrity and

Entity Integrity.

Referential Integrity: It can be simply defined as:

The database must not contain any unmatched foreign key values. The term “unmatched

foreign key value” means a foreign key value for which there does not exist a matching

value of the relevant candidate key in the relevant target (referenced) relation. For

example, any value existing in the D_no attribute in EMPLOYEE relation must exist in

the DEPARTMENT relation. That is, the only D_nos that can exist in the EMPLOYEE

relation are 10, 20 and 40 for the present state/ instance of the database given in tables

above. If we want to add a tuple with D_no value 70 in the EMPLOYEE relation, it will

cause violation of referential integrity constraint. Logically it is very obvious after all the

department number 70 does not exist, so how can any employee be assigned to a

nonexistent department. Database modifications can cause violations of referential

integrity. We list here the test we must make for each type of database modification to

preserve the referential-integrity constraint:

Delete: During the deletion of a tuple two cases can occur:

Deletion of tuple in relation having the foreign key: In such a case simply delete the

desired tuple. For example, in EMPLOYEE relation we can easily delete any tuple.

Deletion of the target of a foreign key reference: For example, an attempt to delete an

employee tuple in DEPARTMENT relation whose D_no is 40. This employee number

appears not only in the DEPARTMENT relation but also in the EMPLOYEE relation.

can this tuple be deleted? If we delete the tuple in DEPARTMENT relation then two

unmatched tuples are left in the EMPLOYEE relation, thus causing violation of

referential integrity constraint. Thus, the following three choices exist for such deletion:

Database Management Systems

Dr. Tariq Ahmad Page 42

RESTRICT: – The delete operation is “restricted” to only the case where there are no such

matching tuples. For example, we can delete the DEPARTMENT record of D_N0 20 as

no matching tuples are contained in the EMPLOYEE relation.

CASCADE: – The delete operation “cascades” or spreads over to delete those matching

tuples also. For example, if the delete mode is CASCADE then deleting department

having D_no as 10 from DEPARTMENT relation will also cause deletion of one tuple

from EMPLOYEE relation.

SET NULL: – The delete operation in the referred relation causes the values of the

referring attribute to be set to NULL. For example, if the delete mode is SET NULL, then

deleting department having D_no as 10 from DEPARTMENT relation will set D_no

value of employee with E_id 10 to NULL in EMPLOYEE relation.

Insert: The insertion of a tuple in the target of reference does not cause any violation.

However, insertion of a tuple in the relation in which, we have the foreign key, for

example, in EMPLOYEE relation it needs to be ensured that all matching target

candidate key exist; otherwise the insert operation can be rejected. For example, one of

the possible EMPLOYEE insert operations would be (104, Rafi Ahmad, 30) which will

lead to violation of referential integrity constraint and will therefore be rejected.

Modify: Modify or update operation changes the existing values. If these operations

change the value that is the foreign key also, the only check required is the same as that

of the Insert operation.

 What should happen to an attempt to update a candidate key that is the target of a foreign

key reference? For example, an attempt to update the D_no of department named “The

Business School” for which there exists at least one matching EMPLOYEE tuple? In

general there are the same possibilities as for DELETE operation:

RESTRICT: The update operation is “restricted” to the case where there are no matching

department tuples. (it is rejected otherwise) .

Database Management Systems

Dr. Tariq Ahmad Page 43

CASCADE: The update operation “cascades” to update the foreign key in those matching

EMPLOYEE tuples also.

Entity Integrity

Before describing the second type of integrity constraint, viz., Entity Integrity, we should

be familiar with the concept of NULL value. Basically, NULL is intended as a basis for

dealing with the problem of missing information. This kind of situation is frequently

encountered in the real world. For example, historical records sometimes have entries

such as “Date of birth unknown”, or police records may include the entry “Present

whereabouts unknown.” Hence it is necessary to have some way of dealing with such

situations in database systems. Thus Codd proposed an approach to this issue that makes

use of special markers called NULL values to represent such missing or unknown

information.

A given attribute in the relation might or might not be allowed to contain NULL. But, can

the Primary key or any of its components (in case of the primary key is a composite key)

contain a NULL? To answer this question an Entity Integrity Rule states: No component

of the primary key of a relation is allowed to accept NULL. In other words, the definition

of every attribute involved in the primary key of any basic relation must explicitly or

implicitly include the specifications of NULL NOT ALLOWED.

Foreign Keys and NULL: Let us consider the relations:

EMPLOYEE

E_no E_name D_no Salary

1001 Tariq Ahmad 10 40000

1002 Mushtaq Ahmad 20 39000

1003 Tanveer Ahmad 20 25000

Database Management Systems

Dr. Tariq Ahmad Page 44

DEPARTMENT

D_no D_name Budget

10 The business School 5000000

20 Distance Education 7000000

30 Islamic Studies 2500000

Suppose that “Kaiser Rashid” is not assigned any Department. In the EMPLOYEE tuple

corresponding to “Kaiser Rashid”, therefore, there is no genuine department number that

can serve as the appropriate value for the D_no foreign key. Thus, one cannot determine

D_name and Budget for “Kaiser Rashid‟s” department as those values are NULL. This

may be a real situation where the person has newly joined and is undergoing training and

will be allocated to a department only on completion of the training. Thus, NULL in

foreign key values may not be a logical error. So, the foreign key definition may be

redefined to include NULL as an acceptable value in the foreign key for which there is no

need to find a matching tuple. Are there any other constraints that may be applicable on

the attribute values of the entities? Yes, these constraints are basically related to the

domain and termed as the domain constraints.

Domain Constraints: Domain constraints are primarily created for defining the logically

correct values for an attribute of a relation. The relation allows attributes of a relation to

be confined to a range of values, for example, values of an attribute age can be restricted

as 18 to 36 or a specific type such as positive integers, etc.

1004 Rafi Ahmad 10 44000

Database Management Systems

Dr. Tariq Ahmad Page 45

Lesson-5

REDUNDANCY AND ASSOCIATED PROBLEMS

Let us consider the following relation.

EMP_DEPT

ENO ENAME ESAL EADDRESS DNO DNAME DHEAD

E101 Tariq Ahmad 40000 Pattan 10 TBS Dr. Shabir

E102 M. Asif 35000 Soura 50 BIOTECH Dr. Andrabi

E103 Rafi Ahmad 45000 Dalgate 10 TBS Dr. Shabir

E104 Ayub Shah 43000 Baramulla 20 DDE Dr. Nelofar

E105 Bashir Ahmad 81000 Hawal 10 TBS Dr. Shabir

E106 Ajaz Khaki 25000 Khanyar 20 DDE Dr. Nelofar

Fig. A state of EMP_DEPT relation

Database Management Systems

Dr. Tariq Ahmad Page 46

The above relation satisfies all the properties of a relation. Conceptually it is convenient

to have all the information in one relation since it is then likely to be easier to query the

database. But the relation above suffers from the following undesirable features:

Data Redundancy:-A lot of information is being repeated in the EMP_DEPT relation.

For example, the information that “DNO 10” is named “TBS” and its head is “Dr.

Shabir” is repeated three records. Same is the case with other records also and this will

increase with each new record being added to the relation (Please find the other duplicate

information in the relation yourself). So we find that the department number, department

name, department head are being repeated often, thus, the table has Data Redundancy.

Also note that every time we wish to insert an employee record, we must insert the

department number, department name, and head of the department that the employee

belongs to. This repetition of information results in problems in addition to the wastage

of space. Look for these problems in the EMP_DEPT relation. What are these problems?

Let us define them.

 All these problems together, are called database anomalies. There are three anomalies in

database systems:

 Update Anomaly: This anomaly is caused due to data redundancy. Redundant

information makes updates more difficult since, for example, changing the name

of the head of department number 10 would require that all employee tuples

containing DNO 10 be updated. If for some reason, all tuples are not updated, we

might have a database that gives two names for head of the department of DNO

10, which is inconsistent information. This problem is called update anomaly. An

update anomaly results in data inconsistency.

 Insertion Anomaly: Inability to represent (insert, add) certain information in the

database is termed as insertion anomaly. The primary key of the above relation

would be (ENO, DNO). Any new tuple to be inserted in the relation must have a

value for the primary key. Since entity integrity constraint requires that a key may

Database Management Systems

Dr. Tariq Ahmad Page 47

not be totally or partially NULL. However, in the given relation if one wanted to

insert the number and name of a new department in the database, it would not be

possible until an employee is assigned to that department. Similarly information

about a new employee cannot be inserted in the database until the employee is

assigned to a department. These problems are called insertion anomalies.

 Deletion Anomaly: Loss of Useful Information from the database is called

deletion anomaly. In some instances, useful information may be lost when a tuple

is deleted. For example, if we delete the tuple corresponding to employee E102

assigned to DNO 50, we will lose relevant information about the department viz.

department number, name and head of the department. This is called deletion

anomaly.

The anomalies arise primarily because the relation EMP_DEPT is badly designed and has

information about employees as well as departments. One solution to these problems is to

decompose the relation into two or more smaller relations. But what should be the basis

of this decomposition? To answer such questions, let us try to formulate how data is

related in the relation with the help of the following Figure:

ENO

DNO

ENAME

ESAL

EADDRESS

DNAME

DHEAD

Database Management Systems

Dr. Tariq Ahmad Page 48

Figure: Dependency diagram of EMP_DEPT relation

 Please note that the arrows in Figure are describing data inter-relationship. For example,

ENO column is unique for every employee so if we know the ENO of an employee, we

can uniquely determine his/her name, address and salary. Similarly, DNO uniquely

determines department name (DNAME) and department head (DHEAD). We also note

one important interrelationship in the above Figure, that is, the DHEAD is dependent on

DNAME. The root cause of the presence of anomalies in a relation is determination of

data by the components of the key and non-key attributes.

The question arises that how do we eliminate all these problems and design good

relations or refine badly designed relations so that all these anomalies are removed and

we have non-redundant and consistent data in our database. The answer to all these

questions is Normalization.

Functional Dependencies, Normalization and its different forms:

Normalization involves decomposition of a relation into smaller relations based on the

concept of functional dependence to overcome the above mentioned undesirable

anomalies. Normalization sometimes can affect performance, as it results in

decomposition of tables, so some queries desire to join these tables to produce the data

once again. But such performance overheads are minimal as Normalization results in

minimization of data redundancy and may result in smaller relation sizes. Also DBMSs

implement optimized algorithms for joining of relations and many indexing schemes that

reduce the load on joining of relations. In any case the advantages of normalization

normally overweigh the performance constraints. Normalization does lead to more

efficient updates since an update that may have required several tuples to be updated,

whereas normalized relations, in general, require the information updating at only one

place. A relation that needs to be normalized may have a very large number of attributes.

In such relations, it is almost impossible for a person to conceptualize all the information

and suggest a suitable decomposition to overcome the problems. Such relations need an

Database Management Systems

Dr. Tariq Ahmad Page 49

algorithmic approach of finding if there are problems in a proposed database design and

how to eliminate them if they exist. Here we will first introduce the basic concept that

supports the process of Normalization of large databases. So let us first define the

concept of functional dependence and subsequently the concepts of normalization will

follow.

SINGLE-VALUED DEPENDENCIES

A database is a collection of related information and it is therefore inevitable that some

items of information in the database would depend on some other items of information.

The information is either single-valued or multi-valued. The name of a person or his date

of birth are single-valued facts; qualifications of a person or subjects that an instructor

teaches are multi-valued facts. We will deal only with single-valued facts and discuss the

concept of functional dependency.

 Functional Dependency

Consider a relation R that has two attributes A and B. The attribute B of the relation is

functionally dependent on the attribute A if and only if for each value of A, no more than

one value of B is associated. In other words, the value of attribute A uniquely determines

the value of attribute B and if there were several tuples that had the same value of A then

all these tuples will have an identical value of attribute B. That is, if t1 and t2 are two

tuples in the relation R where t1(A) = t2(A), then we must have t1(B) = t2(B).

 Both, A and B need not be single attributes. They could be any subsets of the attributes

of a relation R. The functional dependency (FD) between the attributes can be written as:

R.A R.B or simply A B, if B is functionally dependent on A (or A functionally

determines B). Please note that functional dependency does not imply a one-to-one

relationship between A and B. For example, the EMP_DEPT relation whose

dependencies are shown in dependency diagram above can be written as:

 ENO ENAME

Database Management Systems

Dr. Tariq Ahmad Page 50

 ENO ESAL

 ENO EADDRESS

 DNO DNAME

 DNO DHEAD

These functional dependencies imply that there can be only one employee name for each

ENO, only one address for each employee and only one department name for each DNO.

It is of course possible that several employees may have the same name and several

employees may live at the same address like same residential quarters for university

employees.

 In the example above, you may be wondering if the following FDs hold:

 ENAME ENO (1)

DNAME DNO (2)

Certainly there is nothing in the given instance of the database relation presented that

contradicts the functional dependencies as above. However, whether these FDs hold or

not would depend on whether the organization whose database we are considering allows

duplicate employee names and department names. If it was the enterprise policy to have

unique department names then (2) holds. If duplicate employee names are possible, and

one would think there always is the possibility of two employees having exactly the same

name, then (1) does not hold otherwise it holds too.

A simple example of the functional dependency above is when A is a primary key of an

entity (e.g., ENO) and B is some single-valued property or attribute of the entity (e.g.,

Salary). A B then must always hold.

Functional dependencies also arise in relationships. Let C be the primary key of an entity

and D be the primary key of another entity. Let the two entities have a relationship. If the

Database Management Systems

Dr. Tariq Ahmad Page 51

relationship is one-to-one, we must have both C D and D C. If the relationship is

many-to-one, we would have C D and not D C. For many-to-many relationships,

no functional dependencies hold.

For example, consider the following E-R diagram:

Figure: E-R diagram for student course Teacher

In the ER diagram above, the following FDs exist:

FDs in Entities:

Student entity:

Enrolment number Student name, Address

Course Entity:

Course code Course name

Teacher Entity:

Database Management Systems

Dr. Tariq Ahmad Page 52

Teacher Office

FDs in Relationships:

Enrols Relationship:

None as it is many to many

Teaches Relationship:

Course code Instructor

Instructor Course code

The next question is: How do we identify the functional dependence in a database

model?

Functional dependencies arise from the nature of the real world that the database models.

Often A and B are facts about an entity where A might be some identifier for the entity

and B some characteristic. Functional dependencies cannot be automatically determined

by studying one or more instances of a database. They can be determined only by a

careful study of the real world and a clear understanding of what each attribute means.

There are no thumb rules for determining FDs.

SINGLE VALUED NORMALIZATION

E.F Codd in the year 1972 presented three normal forms (1NF, 2NF, and 3NF). These

were based on functional dependencies among the attributes of a relation. Later Boyce

and Codd proposed another normal form called the Boyce-Codd normal form (BCNF).

The fourth and fifth normal forms are based on multi-valued and join dependencies and

were proposed later. In this script we will cover normal forms till BCNF only. Fourth

and fifth normal forms are beyond the scope of this script. For all practical purposes, 3NF

or the BCNF are quite adequate since they remove the anomalies discussed for most

common situations. It should be clearly understood that there is no obligation to

Database Management Systems

Dr. Tariq Ahmad Page 53

normalize relations to the highest possible level. Performance should be taken into

account and sometimes an organization may take a decision not to normalize, say,

beyond third normal form. But, it should be noted that such designs should be careful

enough to take care of anomalies that would result because of the above decision.

Intuitively, the second and third normal forms are designed to result in relations such that

each relation contains information about only one thing (either an entity or a

relationship). A sound E-R model of the database would ensure that all relations either

provide facts about an entity or about a relationship resulting in the relations that are

obtained being in 2NF or 3NF. Normalization results in decomposition of the original

relation. It should be noted that decomposition of relation has to be always based on

principles, such as functional dependence, that ensure that the original relation may be

reconstructed from the decomposed relations if and when necessary. Careless

decomposition of a relation can result in loss of information.

Let us now define normal forms in more detail with examples so that we understand the

concept very well.

The First Normal Form (1NF)

A relation is said to be first normalized or in 1NF if

A. There are no duplicate rows or tuples in the relation.

B. Each data value stored in the relation is single-valued or atomic.

C. Entries in a column (attribute) are of the same kind (type).

Kindly note that in a 1NF relation, the order of the tuples (rows) and attributes (columns)

does not matter. The first requirement above means that the relation must have a key that

uniquely identifies each record in the relation. The key may be single attribute or

composite key. It may even, possibly, contain all the columns. The first normal form

defines only the basic structure of the relation and does not resolve the anomalies

discussed earlier.

Database Management Systems

Dr. Tariq Ahmad Page 54

The relation EMP_DEPT (ENO, ENAME, ESAL, EADDRESS, DNO, DNAME,

DHEAD) shown below is in 1NF, since it satisfies all the above mentioned criteria. The

primary key of the relation is (ENO, DNO).

EMP_DEPT

ENO ENAME ESAL EADDRESS DNO DNAME DHEAD

E101 Tariq 40000 Pattan 10 TBS Dr. Shabir

E102 Asif 35000 Soura 50 BIOTECH Dr. Andrabi

E103 Rafi 45000 Dalgate 10 TBS Dr. Shabir

E104 Ayub 43000 Baramulla 20 DDE Dr. Nelofar

E105 Bashir 81000 Hawal 10 TBS Dr. Shabir

E106 Ajaz 25000 Khanyar 20 DDE Dr. Nelofar

The Second Normal Form (2NF)

The EMP_DEPT relation shown above is in 1NF, yet it suffers from all anomalies as

discussed earlier, so we need to define the next normal form. A relation is in 2NF if it is

in 1NF and every non-key attribute is fully dependent on the primary key of the relation.

Some of the points that should be noted here are:

 A relation having a single attribute key has to be in 2NF.

 In case of composite key, partial dependency on key that is part of the key is not

allowed.

 2NF tries to ensure that information in one relation is about one thing

 Non-key attributes are those that are not part of the primary key.

Database Management Systems

Dr. Tariq Ahmad Page 55

Let us now reconsider the dependency diagram shown on page 71, which defines the FDs

of the relation EMP_DEPT.

These FDs can also be written as:

 ENO ENAME, ESAL, EADDRESS (1)

DNO DNAME, DHEAD (2)

DNAME DHEAD (3)

The key attributes of the relation are (ENO +DNO). All other attributes are non-key

attributes. For the 2NF decomposition, we are concerned with the FDs (1) and (2) above

as they relate to partial dependence on the key that is (ENO +DNO). As these

dependencies (also refer to dependency diagram on page 71) show that the relation is not

in 2NF and hence suffer from all the three anomalies and redundancy problems as many

non-key attributes can be derived from partial key attribute. To convert the relation into

2NF, let us use FDs. As per FD (1) the ENO uniquely determines ENAME, EADDRESS

and ESAL, so one relation should be:

EMPLOYEE (ENO, ENAME, EADDRESS, ESAL)

Now as per FD (2), DNO uniquely identifies DNAME and DHEAD, although head of the

department can be known if we know the Name of the department, which in turn can be

known if we know the department number. This is called transitive dependency. We find

in FD (2) that DNO attribute uniquely determines the name of the department. In FD (3)

we see that the name of the department uniquely determines the head of the department.

This can be written as:

 DNO DNAME

 DNAME DHEAD

 ⇒ DNO DHEAD (Transitive dependency)

Database Management Systems

Dr. Tariq Ahmad Page 56

 Thus, FD (2) can now be rewritten as:

 DNO DNAME, DHEAD

This FD now gives us the second decomposed relation:

 DEPARTMENT (DNO, DNAME, DHEAD)

Thus, the relation EMP_DEPT has been decomposed into following two relations:

 EMPLOYEE (ENO, ENAME, EADDRESS, ESAL)

 DEPARTMENT (DNO, DNAME, DHEAD)

 Is the decomposition into 2NF complete now?

No, how would you join the two relations created above any way? To achieve this we

can either create a joining relation comprising of the two key attributes forming the

composite key and any other attribute that is not covered in the decomposition, thus

forming a third relation as EMP_DEP (ENO,DNO). The other way out is to make some

attribute a joining attribute for primary key- foreign key relationship between the two

relations. This can be done in this case by adding DNO to EMPLOYEE relation and

making it a foreign key referring DNO of DEPARTMENT relation.

So, the relation EMP_DEPT in 2NF form would be:

EMPLOYEE (ENO, ENAME, EADDRESS, ESAL)

DEPARTMENT (DNO, DNAME, DHEAD)

EMP_DEP (ENO, DNO)

 Or

EMPLOYEE (ENO, ENAME, EADDRESS, ESAL, DNO)

DEPARTMENT (DNO, DNAME, DHEAD)

Database Management Systems

Dr. Tariq Ahmad Page 57

EMPLOYEE

ENO ENAME ESAL EADDRESS DNO

E101 Tariq 40000 Pattan 10

E102 Asif 35000 Soura 50

E103 Rafi 45000 Dalgate 10

E104 Ayub 43000 Baramulla 20

E105 Bashir 81000 Hawal 10

E106 Ajaz 25000 Khanyar 20

DEPARTMENT

DNO DNAME DHEAD

10 TBS Dr. Shabir

50 BIOTECH Dr. Andrabi

20 DDE Dr. Nelofar

The Third Normal Form (3NF)

Although, transforming a relation that is not in 2NF into a number of relations that are in

2NF removes many of the anomalies, it does not necessarily remove all anomalies. Thus,

further Normalization is sometimes needed to ensure further removal of anomalies. These

anomalies arise because a 2NF relation may have attributes that are not directly related to

the candidate keys of the relation.

Database Management Systems

Dr. Tariq Ahmad Page 58

“A relation is in third normal form, if it is in 2NF and every non-key attribute of the

relation is non-transitively dependent on the primary key of the relation”. Note that 3NF

is concerned with transitive dependencies which do not involve candidate keys. A 3NF

relation with more than one candidate key will clearly have transitive dependencies of the

form: primary_key other_candidate_key any_non-key_column.

Another definition of 3NF where in we have only one candidate key can be given as:

A relation R having just one candidate key is in third normal form (3NF) if and only if

the non-key attributes of R (if any) are:

1) Mutually independent, and

2) Fully dependent on the primary key of R.

A non-key attribute is any column which is not part of the primary key. Two or more

attributes are mutually independent if none of the attributes is functionally dependent on

any of the others. Attribute Y is fully functionally dependent on attribute X if X Y, but

Y is not functionally dependent on any proper subset of the (possibly composite) attribute

X

But what is transitive dependence?

Let A, B and C be three attributes of a relation R such that A B and B C. From these

FDs, we may derive A C. This dependence A C is transitive.

 Now, let us consider the following relation:

STUD_HOSTEL

RollNo SName Deptt. Semester H_name

1084 Reyaz TBS 1 Sheikhul Alam

1048 Khalid BFS 1 Sheikhul Alam

Database Management Systems

Dr. Tariq Ahmad Page 59

1068 Gaffar Math 2 Mehboobul Alam

1038 Rahim CS 2 Mehboobul Alam

1082 Maria TBS 2 Mehboobul Alam

1045 Asif Zoo 4 Gani Kashmiri

 In the above relation RollNo is the key and all other attributes are functionally dependent

on it, thus it is in 2NF. If all the 1
st
 semester students are accommodated in Sheikhul

Alam hostel, all 2
nd

 semester students in Mehboobul Alam, all 3
rd

 semester students in

Anwar Shah and all 4
th

 semester students in Gani Kashmiri hostel, then the non-key

attribute H_name is dependent on the non-key attribute Semester.

Please observe that given the semester of a student, his/her hostel is known and vice-

versa. The dependency of hostel on semester leads to duplication of data as is evident

from the relation.

Now let‟s assume that all 1
st
 semester students are asked to move to Mehboobul Alam

hostel and all 2
nd

 semester students are asked to move to Sheikhul Alam hostel, this

change should be made at many places in the STUD_HOSTEL relation. Again when a

student‟s semester of study changes, his/her hostel change should be made at many places

in the relation, which is simply undesirable. Thus the relation STUD_HOSTEL is not in

3NF.

To transform it into 3NF, we should decompose this relation into two relations as:

STUDENT (RollNo, Sname, Deptt., Semester) and

HOSTEL (Semester, H_name)

This decomposition removes data redundancy and making changes as mentioned above

becomes easier. This is shown below.

Database Management Systems

Dr. Tariq Ahmad Page 60

STUDENT

RollNo Sname Deptt. Semester

1084 Reyaz TBS 1

1048 Khalid BFS 1

1068 Gaffar Math 2

1038 Rahim CS 2

1082 Maria TBS 2

1045 Asif Zoo 4

HOSTEL

Semester H_name

1 Sheikhul Alam

2 Mehboobul Alam

3 Anwar Shah

4 Gani Kashmiri

Note here that, in case hostel allocated to students don‟t depend on their semester of

study then the relation STUD_HOSTEL is already in 3NF.

The 3NF is usually quite adequate for most relational database designs. There are

however some situations where a relation may be in 3 NF, but have the anomalies. In

such cases further normalization is needed.

Boyce-Codd Normal Form (BCNF)

BCNF was proposed as a simpler form of 3NF, but it was found to be stricter than 3NF

because every relation in BCNF is also in 3NF, however a relation in 3NF is not

necessarily in BCNF.

Database Management Systems

Dr. Tariq Ahmad Page 61

The definition of BCNF addresses certain situations which 3NF does not handle. The

characteristics of a relation which distinguish 3NF from BCNF are given below. Since it

is so unlikely that a relation would have these characteristics, in practical real-life design

it is usually the case that relations in 3NF are also in BCNF. Thus many authors make a

vague distinction between 3NF and BCNF when it comes to giving advice on "how far"

to normalize a design. Since relations in 3NF but not in BCNF are slightly unusual, it is a

bit more difficult to come up with meaningful examples. To be precise, the definition of

3NF does not deal with a relation that:

1. has multiple candidate keys, where

2. those candidate keys are composite, and

3. the candidate keys overlap (i.e., have at least one common attribute)

If an attribute of a composite key is dependent on an attribute of another composite key,

BCNF is needed.

Consider the following relation:

PROFESSOR (P_code, Deptt., HOD, Percent_time)

PROFESSOR

P_code Deptt. HOD Percent_time

P1 TBS Shabir 50

P1 BFS Nazir 50

P2 CHM Khaleeq 25

P2 PHS Nissar 75

P3 BFS Nazir 100

Following assumptions are made:

1. A Professor can work in more than one department

2. The percentage of time he spends in each department is given

3. Each department has only one HOD

Database Management Systems

Dr. Tariq Ahmad Page 62

The two possible composite keys are:

(P_code, Deptt.)

(P_code, HOD)

Observe that DEPTT. And HOD are not non-key attributes, they are part of composite

keys. The relation PROFESSOR is in 3NF. However the naes of department and HOD

are duplicated. Further if Professor P2 resigns, rows 3 and 4 are deleted and we lose the

information that Kahleeq and Nissar are the HODs of the CHM and PHS departments.

So to remove these problems, we need to decompose the relation to normalize it to BCNF

as is shown below:

PROFESSOR

P_code Deptt. Percent_time

P1 TBS 50

P1 BFS 50

P2 CHM 25

P2 PHS 75

P3 BFS 100

DEPTT.

Deptt. HOD

TBS Shabir

BFS Nazir

Database Management Systems

Dr. Tariq Ahmad Page 63

CHM Khaleeq

PHS Nissar

The above two relations are BCNF normalized.

Higher Order Normal Forms:

There are more normal forms beyond BCNF. However, these normal forms are not based

on the concept of functional dependence. Further normalization is needed if the relation

has Multi-valued, join dependencies, or template dependencies. These topics are not

covered here because these are beyond the scope of this script and further it has been

observed that normalization up to BCNF is enough to achieve the required results in most

of the databases.

DECOMPOSITION AND ITS PROPERTIES

We have used normalization to decompose relations in the previous section. But what

does decomposition formally mean? Decomposition is a process of splitting a relation

into its projections that will not be disjoint. This means that we vertically divide a

relational into two or smaller normalized relations.

Desirable properties of decomposition are:

 Attribute preservation

 Lossless-join decomposition

 Dependency preservation

 Lack of redundancy

Attribute Preservation

Database Management Systems

Dr. Tariq Ahmad Page 64

This is a simple and obvious requirement that involves preserving all the attributes that

are there in the relation that is being decomposed. If we join the decomposed relations,

we get back the original relation that was decomposed.

Lossless-Join Decomposition

Let us show an intuitive decomposition of a relation. We need a better basis for deciding

decompositions since intuition may not always be correct. We illustrate how a careless

decomposition may lead to problems including loss of information. Consider the

following relation

ENROL (sno, cno, date-enrolled, room-no, instructor)

Suppose we decompose the above relation into two relations ENROLl and ENROL2 as

follows:

ENROL1 (sno, cno, date-enrolled)

ENROL2 (date-enrolled, room-no, instructor)

Let an instance of the relation ENROL be:

ENROLL

SNO CNO DATE_ENROLLED ROOM_NO INSTRUCTOR

1011 COM101 20-08-2011 1 NAZIR

1012 COM102 20-08-2011 2 MUSHTAQ

1013 COM103 20-08-2011 1 RIYAZ

1014 COM104 20-08-2011 5 SARTAJ

1015 COM105 20-08-2011 6 KAISER

Database Management Systems

Dr. Tariq Ahmad Page 65

Figure: A sample relation for decomposition

 Then on decomposition the relations ENROL1 and ENROL2 would be:

ENROL1

SNO CNO DATE_ENROLLED

1011 COM101 20-08-2011

1012 COM102 20-08-2011

1013 COM103 20-08-2011

1014 COM104 20-08-2011

1015 COM105 20-08-2011

All the information that was in the relation ENROL appears to be still available in

ENROL1 and ENROL2 but this is not so. Suppose, we wanted to retrieve the student

numbers of all students taking a course from Riyaz Ahmad, we would need to join

ENROL2

DATE_ENROLLED ROOM_NO INSTRUCTOR

20-08-2011 1 NAZIR AHMAD

20-08-2011 2 MUSHTAQ BHAT

20-08-2011 1 RIYAZ AHMAD

20-08-2011 5 SARTAJ AZIZ

20-08-2011 6 KAISER AHMAD

Database Management Systems

Dr. Tariq Ahmad Page 66

ENROL1 and ENROL2. For joining the only common attribute is Date-enrolled. Thus,

the resulting relation obtained will not be the same as that of first Figure. (We will learn

join operation in the next unit)

The join will contain a number of spurious (or unwanted) tuples that were not in the

original relation. Because of these additional tuples, we have lost the right information

about which students take courses from Riyaz Ahmad. (Yes, we have more tuples but less

information because we are unable to say with certainty who is taking courses from Riyaz

Ahmad). Such decompositions are called lossy decompositions. A non-lossy or lossless

decomposition is that which guarantees that the join will result in exactly the same

relation as was decomposed. One might think that there might be other ways of

recovering the original relation from the decomposed relations but, sadly, no other

operators can recover the original relation if the join does not.

We need to analyze why the decomposition is lossy. The common attribute in the above

decompositions was Date-enrolled. The common attribute is the glue that gives us the

ability to find the relationships between different relations by joining the relations

together. If the common attribute would have been the primary key of at least one of the

two decomposed relations, the problem of losing information would not have existed.

The problem arises because several enrolments may take place on the same date.

The dependency based decomposition scheme as discussed earlier creates lossless

decomposition.

Dependency Preservation

 It is clear that the decomposition must be lossless so that we do not lose any information

from the relation that is decomposed. Dependency preservation is another important

requirement since a dependency is a constraint on the database. If all the attributes

appearing on the left and the right side of a dependency appear in the same relation, then

a dependency is considered to be preserved. Thus, dependency preservation can be

checked easily. Dependency preservation is important, because as stated earlier,

Database Management Systems

Dr. Tariq Ahmad Page 67

dependency is a constraint on a relation. Thus, if a constraint is split over more than one

relation (dependency is not preserved), the constraint would be difficult to meet. Please

refer to suggested readings for more details. But remember that “A decomposition into

3NF is lossless and dependency preserving whereas a decomposition into BCNF is

lossless but may or may not be dependency preserving.”

Lack of Redundancy

We have discussed the problems of repetition of information in a database. Such

repetition should be avoided as much as possible. Let us state once again that redundancy

may lead to inconsistency. On the other hand controlled redundancy sometimes is

important for the recovery in database system. Decomposition reduces redundancy while

we normalize the relations.

RULES OF DATA NORMALIZATION

Let us now summarize Normalization process with the help of several clear and clean

rules. The following are the basic rules for the Normalization process:

 Eliminate Repeating Groups: Make a separate relation for each set of related

attributes, and give each relation a primary key.

 Eliminate Redundant Data: If an attribute depends on only part of a multi-

attribute key, remove it to a separate relation.

 Eliminate Columns Not Dependent On Key: If attributes do not contribute to a

description of the key, remove them to a separate relation.

 Isolate Independent Multiple Relationships: No relation may contain two or more

1:n or n:m relationships that are not directly related.

Isolate Semantically Related Multiple Relationships: There may be practical constraints

on information that justify separating logically related many-to-many relationships.

Database Management Systems

Dr. Tariq Ahmad Page 68

SUMMARY

This unit covered the details of Database integrity in detail. It covered aspects of keys,

entity integrity and referential integrity. The role of integrity constraints is to make data

more consistent. A functional dependency (FD) is a many-to-one relationship between

two sets of attributes of a given relation. Given a relation R, the FD A B (where A and

B are subsets of the attributes of R) is said to hold in R if and only if, whenever two

tuples of R have the same value for A, and they also have the same value for B.

We discussed Single valued Normalization and the concepts of first, second, third, and

Boyce/Codd normal forms. The purpose of Normalization is to avoid redundancy, and

hence to avoid certain update insertion and detection anomalies. We have also discussed

the desirable properties of a decomposition of a relation to its normal forms. The

decomposition should be attribute preserving, dependency preserving and lossless.

We have also discussed various rules of data Normalization, which help to normalize the

relations cleanly. Those rules are eliminating repeating groups, eliminate redundant data,

and eliminate columns not dependent on key, isolate independent multiple relationship

and isolate semantically related multiple relationships.

Exercise:

I. Consider supplier-part-project database given below:

SUPPLIERS

S_NO S_NAME CITY

Database Management Systems

Dr. Tariq Ahmad Page 69

S001 Sahil Enterprises Srinagar

S002 Metro Sales Corp. Sopore

S003 Danish Enterprises Pulwama

S004 Bharat Sanchar Nigam Ltd Delhi

S005 Solar India Mumbai

PARTS

P_NO P_NAME COLOR CITY

P2001 Nut Red Srinagar

P2002 Bolt Blue Srinagar

P2003 Screw White Sopore

P2004 Screw Blue Delhi

P2005 Cam Brown Pulwama

P2006 Cog Grey Delhi

PROJECTS

PR_NO PR_NAME CITY

PR101 Gate Simulator Srinagar

PR102 Remote Controller Jammu

Database Management Systems

Dr. Tariq Ahmad Page 70

PR103 Door Opener Doda

PR104 GIS Sopore

PR105 SIS Srinagar

PR106 Grade Calculator Baramulla

PR107 Salary Manager Badgam

SUP_PAR_PROJ

S_NO P_NO PR_NO QUANTITY

S001 P2001 PR101 200

S001 P2001 PR104 700

S002 P2003 PR102 400

S002 P2002 PR107 200

S002 P2003 PR103 500

S003 P2005 PR105 500

S003 P2003 PR103 700

S003 P2004 PR103 200

S003 P2005 PR104 300

S004 P2006 PR102 400

S004 P2006 PR101 500

Database Management Systems

Dr. Tariq Ahmad Page 71

S004 P2006 PR103 600

S004 P2001 PR102 800

S004 P2003 PR104 900

S005 P2004 PR103 100

1) What are the Candidate keys and PRIMARY key to the relations?

2) What are the entity integrity constraints? Are there any domain constraints?

3) What are the referential integrity constraints in these relations?

4) What are referential actions you would suggest for these referential integrity

constraints?

II. Consider the following relation

LIBRARY (member_id, member_name, book_code, book_name, issue_date, return_date)

The relation stores information about the issue and return of books in a Library to its

members. A member can be issued many books. What are the anomalies in the relation

above?

3) What are the functional dependencies in the relation above? Are there any

constraints, especially domain constraint, in the relation?

4) Normalize the above relation to 3NF.

III. What is the need of dependency preservation?

IV. What is a lossless decomposition?

V. What are the steps for Normalization till BCNF?

VI. Fill in the blanks:

Database Management Systems

Dr. Tariq Ahmad Page 72

1. A database system is fully relational if it supports ____________ and

2. A Relation resembles a _________, a tuple resembles a _____________ and an

attribute resembles a _____________

3. A candidate key which is not a primary key is known as a _____________key.

4. Which one of the following is not a traditional set operator defined on relational

algebra?

 a. Union b. Intersection

c. Difference d. Join

 VII. Consider the relation and answer the questions given

 EMP (ecode, ename, pcode, timespent)

 a). Identify the candidate keys

 b). Are these keys composite. If yes, which is the overlapping sttribute

 c). Normalize the relation into BCNF, if needed

 VIII. Consider the relation and answer the questions given

 EMPLOYEE (ecode, ename, deptt., salary, project_no, p_termination_date)

 a). Draw a dependency diagram for the relation

 b). Identify the anomalies in the relation

 c). What are the causes of these anomalies

 d). Normalize the relation into 3NF and BCNF (if required)

Further/Suggested Readings

1. Elmasri R., Navathe B., “Fundamentals of Database Systems”, Pearson Education.

Database Management Systems

Dr. Tariq Ahmad Page 73

2. Desai Bipin C., “An Introduction to Database Systems”, Galgotia Publications Pvt.

Ltd.

3. Silberschatz A., Korth Henry, Sudarshan S., “Database System Concepts”,

McGraw Hill Publications.

